Saturday, April 25, 2020
Isotopes and Its Uses free essay sample
ISOTOPES History of the term: In the bottom right corner of JJ Thomsons photographic plate are the separate impact marks for the two isotopes of neon: neon-20 and neon-22. The term isotope was coined in 1913 by Margaret Todd, a Scottish physician, during a conversation with Frederick Soddy (to whom she was distantly related by marriage). [4] Soddy, a chemist at Glasgow University, explained that it appeared from his investigations as if each position in the periodic table was occupied by multiple entities. Hence Todd made the suggestion, which Soddy adopted, that a suitable name for such an entity ould be the Greek term for at the same place. Soddys own studies were of radioactive (unstable) atoms. The first observation of different stable isotopes for an element was by J. J. Thomson in 1913. As part of his exploration into the composition of canal rays, Thomson channeled streams of neon ions through a magnetic and an electric field and measured their deflection by placing a photographic plate in their path. We will write a custom essay sample on Isotopes and Its Uses or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page Each stream created a glowing patch on the plate at the point it struck. Thomson observed two separate patches of light on the photographic plate (see mage), which suggested two different parabolas of deflection. Thomson eventually concluded that some of the atoms in the neon gas were of higher mass than the rest. F. W. Aston subsequently discovered different stable isotopes for numerous elements using a mass spectrograph. Isotopes are different types of atoms (nuclides) of the same chemical element, each having a different number of neutrons. In a corresponding manner, isotopes differ in mass number (or number of nucleons) but never in atomic number. l] The number of protons (the atomic number) is the same because that is what characterizes a chemical element. For example, carbon-12, carbon-13 and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13 and 14, respectively. The atomic number of carbon is 6, so the neutron numbers in these isotopes of carbon are therefore 12-6 = 6, 13-6 = 7, and 14-6 = 8, respectively. A nuclide is an atomic nucleus with a specified composition of protons and neutrons. The nuclide concept emphasizes nuclear properties over chemical properties, while the isotope concept emphasizes chemical over nuclear. The neutron number has drastic effects on nuclear properties, but negligible effects on chemical properties. Since isotope is the older term, it is better known, and is still sometimes used in contexts where nuclide might be more appropriate, such as nuclear technology. An isotope and/or nuclide is specified by the name of the particular element (this indicates the atomic number implicitly) followed by a hyphen and the mass number (e. g. helium-3, carbon-12, carbon-13, iodine-131 and uranium-238). When a chemical symbol is used, e. g. C for carbon, standard notation is to indicate the number of nucleons with a superscript at the upper left of the chemical symbol and to indicate the atomic number with a subscript at the lower eft (e. g. 32He, 42He, 126C, 146C, 235920, and 239920). some isotopes are radioactive and are therefore described as radioisotopes or radionuclides, while others have never been observed to undergo radioactive decay and are described as stable stable isotopes. Th ere are about 339 naturally occurring nuclides on Earth[2], of which 288 are primordial nuclides. These include 31 nuclides with very long half lives (over 80 million years) and 257 which are formally considered as stable[2]. About 30 of these stable isotopes have actually been observed to decay, but with half lives too long to be estimated so far. This leaves 227 nuclides that have not been observed to decay at all. Numbers of isotopes per element Of the 80 elements with a stable isotope, the largest number of stable isotopes observed for any element is ten (for the element tin). Xenon is the only element that has nine stable isotopes. Cadmium has eight stable isotopes. Five elements have seven stable isotopes, eight have six stable isotopes, ten have five stable isotopes, eight have four stable isotopes, nine have three stable isotopes, 16 have two stable isotopes (counting 180m73Ta as stable), and 26 elements have only a single stable sotope (of these, 19 are so-called mononuclidic elements, having a single primordial stable isotope that dominates and fixes the atomic weight of the natural element to high precision; 3 radioactive mononuclidic elements occur as well). [5] In total, there are 257 nuclides that have not been observed to decay. For the 80 elements that have one or more stable isotopes, the average number of stable isotopes is 257/80 = 3. 2 isotopes per element. Even/odd N I Mass IE 10 1 All I stable | 145 | 101 12461 Longitved 120 16 126 1 primordial | 165 | 107 12721 Even and odd nucleons numbers The proton:neutron ratio is not the only factor affecting nuclear stability. Adding neutrons to isotopes can vary their nuclear spins and nuclear shapes, causing differences in neutron capture cross-sections and gamma spectroscopy and nuclear magnetic resonance properties. Even mass number Beta decay of an even-even nucleus produces an odd-odd nucleus, and vice versa. An even number of protons or of neutrons are more stable (lower binding energy) because of pairing effects, so even-even nuclei are much more stable than odd-odd. One effect is that there are few stable odd-odd nuclei, but another effect is to prevent eta decay of many even-even nuclei into another even-even nucleus of the same mass number but lower energy, because decay proceeding one step at a time would have to pass through an odd-odd nucleus of higher energy. This makes for a larger number of stable even-even nuclei, up to three for some mass numbers, and up to seven for some atomic (proton) numbers. Double beta decay directly from even-even to even-even skipping over an odd-odd nuclide is only occasionally possible, and even then with a half-life greater than a billion times the age of the universe. Even- ass-number nuclides have integer spin and are bosons. Even proton-even neutron Even/odd Z, N I IEE 100 1 EO IOE I Longlived | 16 14 12 14 1 primordial 1 15619 155 152 1 For example, the extreme stability of helium-4 due to a double pairing of 2 protons and 2 neutrons prevents any nuclides containing five or eight nucleons from existing for long enough to serve as platforms for the buildup of heavier elements during fusion formation in stars (see triple alpha process). There are 141 stable even-even isotopes, forming 55% of the 257 stable isotopes. There are also 16 primordial longlived even-even isotopes. As a result, many of the 41 even-numbered elements from 2 to 82 have many primordial isotopes. Half of these even-numbered elements have six or more stable isotopes. All even-even nuclides have spin O in their ground state. Odd proton-odd neutron Only five stable nuclides contain both an odd number of protons and an odd number of neutrons: the first four odd-odd nuclides 21 H, 63Li, 105B, and 147N (where changing a proton to a neutron or vice versa would lead to a very lopsided proton- neutron ratio) and 180m73Ta, which has not yet been observed to decay despite experimental attempts[6]. Also, four long-lived radioactive odd-odd nuclides (4019K, 5023V, 13857La, 17671 Lu) occur naturally. Of these 9 primordial odd-odd nuclides, only 147N is the most common isotope of a common element, because it is a part of the CNO cycle; 63Li and 105B are minority isotopes of elements that are rare compared to other light elements, while the other six isotopes make up only a tiny percentage of their elements. Few odd-odd nuclides (and none of the primordial ones) have spin O in the ground state. Odd mass number There is only one beta-stable nuclide per odd mass number because there is no ifference in binding energy between even-odd and odd-even comparable to that between even-even and odd-odd, and other nuclides of the same mass are free to beta decay towards the lowest-energy one. For mass numbers 5, 147, 151, and 209 and up, the one beta-stable isobar is able to alpha decay, so that there are no stable isotopes with these mass numbers. This gives a total of 101 stable isotopes with odd mass numbers.
Friday, April 10, 2020
Why Blank University Essay Sample?
Why Blank University Essay Sample?One of the easiest ways to help you learn how to write a good university essay is to get yourself a blank university essay sample. These are documents that can be used by students to create their own university essays. This will enable them to practice their writing skills and develop a better sense of how to write an essay for a college or university.In order to use a blank university essay sample, all you need to do is take a look online at a blank essay template. There are many different types of blank essay templates online, ranging from the standard first paragraph, introductory paragraph, endnote, conclusion, chapter and section header. It is important that you know which template you will want to use when you download one for your university essays.The reason that you need to use a blank university essay sample is so that you can take your time and really learn about how to write a good essay. There are many steps to take in order to write a g ood essay. The essay should have a clear beginning, middle and ending. By learning to understand what goes on in between, you will learn how to write a quality university essay.A blank university essay sample will give you an idea of how to structure your essay. You will also be able to see how to include details, as well as what words are appropriate for that topic. This will also give you a good idea of how to add pictures and other visuals to your essays.As you learn how to write a good essay, you will be able to start by taking a look at a blank university essay sample. Look through the sample and learn what you can about how to write an essay. For this particular type of writing sample, you should read several different samples.By looking at several different examples, you will be able to familiarize yourself with the basic steps involved in writing a good essay. By taking notes of some of the steps that you are able to do, you will be able to understand what a good essay shoul d consist of. If you make a few mistakes along the way, it will be easier for you to avoid those mistakes. This will allow you to begin writing a good essay without too much effort.The reason that you need to get yourself a blank university essay sample is so that you can focus on the parts of the essay that you are interested in. By having a sample to work with, you will be able to focus on the parts of the essay that you are more interested in.
Subscribe to:
Posts (Atom)